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We study the probability densities of finite-time local Lyapunov exponents in low-dimensional chaotic
systems. While the multifractal formalism describes how these densities behave in the asymptotic or long-time
limit, there are significant finite-size corrections, which are coordinate dependent. Depending on the nature of
the dynamical state, the distribution of local Lyapunov exponents has a characteristic shape. For intermittent
dynamics, and at crises, dynamical correlations lead to distributions with stretched exponential tails, while for
fully developed chaos the probability density has a cusp. Exact results are presented for the logistic map,
—4x(1—x). At intermittency the density is markedly asymmetric, while for “typical” chaos, it is known that
the central limit theorem obtains and a Gaussian density results. Local analysis provides information on the
variation of predictability on dynamical attractors. These densities, which are used to charactenizeuthie
form spatial organization on chaotic attractors, are robust to noise and can, therefore, be measured from
experimental datd.S1063-651X%99)10208-3

PACS numbes): 05.45-a

[. INTRODUCTION attractor. Although the local Lyapunov exponébtE) dis-
tributions are stationary, they depend on the time interval
The statistics of distributions of Lyapunov exponentsover which the finite-time LE is computed. For very short
(sometimes called stretch exponertiave been studied in a times, the distributions keep changing shape and are difficult
number of physical situations ranging from turbulent flowsto classify, while in the asymptotic limit, as the time interval
[1] to Hamiltonian dynamicgin many-particle systemg2]  —oe, all distributions must eventually collapse tosefunc-
and conservative mapping8]), and are related to general- tion centered on the global LE. The manner in which this
ized dimensions and entropig$,5]. happens is usually described by the multifractal formalism
Lyapunov exponents provide a quantitative characterizaf5], but here we address the important corrections to scaling
tion of dynamics: for a dynamical system hdimensions, that can be obtained for finite times.
the D Lyapunov exponents of an orbit measure the rate at Some aspects of such distributions have been studied pre-
which volume elements in the phase space expand or cowiously. For “typical” chaotic dynamics, when correlations
tract along the orbit, in the different directions. A positive die out exponentially rapidly, the central-limit theorem holds
Lyapunov exponenflE) signifies exponential divergence of for a number of averaged quantities, including local
trajectories in the given direction, and is associated with chakyapunov exponent§5,7]. Thus, the density is a Gaussian
otic dynamics, while negative LEs are associated with stabléunction, whose width depends on the length of the time
motion, when nearby trajectories converge. Although the exinterval over which the exponents are computed. For inter-
ponents are global or asymptotic quantities, it is often in-mittent systems on the other hand, it is well known that
structive to examine the distribution of values that the LEcorrelations die out very slowly; this can lead to a power-law
may take locally, namely, over finite-time segments along acaling for several quantities such as the Lyapunov exponent
given trajectory{5-7]. If the underlying attractor is nonuni- or the diffusion constarjtl0]. Benziet al. also studied inter-
form, on a chaotic trajectory thiecal LE can be negative mittency in more detail and observed a deviation from the
within a finite-time interval. Similarly, on a nonchaotic tra- normal distribution in quantities such as the fluctuations of
jectory the local LE can take positive values over finite-timethe response functiofLl].
intervals [8]. These considerations are of additional rel- We extend the analysis of finite-time Lyapunov exponents
evance for Lyapunov exponents computed from experimento the particular case of fully developed chaos and intermit-
tal data[9], since these are, naturally, only finite-time expo-tency, where dynamical correlations persist over long times.
nents. This leads to significant departures from the simple central
In this paper, we study the statistics of finite-time or locallimit behavior, and the resulting distributions are quite dis-
LEs in low-dimensional dissipative dynamical systems. Lo-tinct from the normal density, typically having exponential
cal Lyapunov exponents, which are defined in E).below, or stretched exponential tails.
depend on initial conditions, unlike the asymptotic or global An example, which can be solved exactly, is the com-
Lyapunov exponent. The distribution of values that the locaimonly studied logistic map at the Ulam point, namety,
exponents take depends, in a characteristic manner, on the4x(1—x), for which we obtain an analytic form of the
nature of the dynamical state; our present focus is on chaprobability density for all times. The same distribution oc-
acterizing the different distributions that are obtained for dif-curs for all parameter values where there is a boundary crisis,
ferent dynamical attractors. and thus appears to be quite general.
We find that the characteristic densities of Lyapunov ex- We also treat the case of intermittent dynamics in some
ponents fall in distinct classes depending on the nature of theetail. In all instances of intermittency, the dynamics
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switches between two or more distinct types of behavior. ' 3 < ' ™
The distribution of LLEs that arise in such a situation can be_ _ | b)
shown to have components arising separately from these |ro
dividual behaviors. ,<

Our main results are presented in Sec. Il, where we dlsﬂ- or .
cuss the different types of distributions for flnlte time LEs. —
Our studies have been mainly on simple dynamical system 3 [ . -3 ‘ . .
such as the logistic mapping, but the results we obtain appe: 0.30 084 038 025 050 075 1.00
to be more generally valid: these distributions can be seen i : : :
a variety of systemgboth mappings and flowsThis is fol- al c) |
lowed by a summary and conclusions in Sec. Ill.
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II. CHARACTERISTIC DENSITIES
OF FINITE-TIME EXPONENTS
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For generality, consider B-dimensional discrete nonlin- ' ,
ear systenj12]

Xn+1= Fia1(Xn), (2)

FIG. 1. Characteristic probability densities that arise in chaotic
whereX € R and{a} are a set of parameters. There &re dynamical systems, corresponding(# “typical” chaos, (b) fully
Lyapunov exponents that are defined by considering a set @feveloped chaoge) intermittency, andd) crisis-induced intermit-
orthonormal D-dimensional vectoré’“, m=1,...D, and tency. Numerical results are fét(\,N) for the logistic map with

— — — _ — 6
examining their evolution under the effect of the tangent® =37, (B a=4, () a=1+\8-10° and @ a

. S . . =3.7 447 104. The local Lyapunov exponents are calculated from
TI?(F;E)m%eV:IEIIﬁB is determined by the Jacobiarrphamely, N step segments with $0terations. Different values dfl are cho-

sen for the three cases, (@ the Gaussian nature becomes apparent
. atN around 10 or so, the cusp (h) is already evident foN around
§"=[IF((Xj-1).g" 1], (2) 8 and survives for alN, while the asymmetry in the distributidi)
and(d) appears to persist for all. Note that for(d), N should be a
the Lyapunov exponents are multiple of the periodicity of the window.

The asymptotic Lyapunov exponeft=\,, does not depend

—lim = In em m=12....D. 3 on initial conditions with probability 1 buby does. The
N N E Il P @ probability densityof local Lyapunov exponents, which is a
stationary quantity, is defined as
The vectorse™ are reorthonormalized along the trajectory, P, (\,N)d\=Probability that\
and the subscrigthere refers to the time. Stretch exponents
are the logarithms of the ratios by which the vectors expand takes a value
(or contract along theD directions, betweenh and X+ dx. )
AT =In€M, (4) If the stretch exponents of a system are considered to be

random variables since the dynamics is chaotic, then the
and this helps to define thath finite-time Lyapunov expo- finite-time LEs should obey the central-limit theorem, and
nent in a time interval of lengthl as the distribution function can be written in the general form

[7]

l N
=N Z Inllef". ®) P(\,N)~ exp— ND(L), )

1
[ZWN(I)”]]JZ

In the remainder of this paper onljp=1, the largest whered()\) is a convexfunction with minimum at\=A.
Lyapunov exponent, is considered, so the superscript indegxpanding® to second order gives the Gaussian density
will be omitted henceforth in order to simplify notation. Lo-
cal Lyapunov exponents are calculated along a trajectory that P,(\,N)~exp— (A—A)?/20, (9)
is divided into segments of length. By A (i) is meant the

N-step Lyapunov exponent calculated from tie segment, with varianceo?e 1/N. Indeed this argument has been used

very effectively to analyze finite-time LEs on so-called

and clearly ] Y Rl
“typical” chaotic attractors[5,7,10 as shown in Fig. (),
KN where the Gaussian nature of the density is evident. How-
V()= i E ) (6) ever, for other dynamical attractorB(\,N) can be quite

N j=nk=1)+1 ' different, as shown in Figs.()—1(d). Indeed, the departure
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of ®(\) from a polynomial function with quadratic maxi- 3
mum has been used to characterize the state and study the
persistence of correlatior}8,13,14. T
Regardless of the behavior &(\,N) for small N, the =
local LEs eventually converge to the global exponent, ;_1
limy_.P.(N,N)— (A —N\). However, for sufficient large
N (but still far from the limitN—o) the characteristic dis- 3 . .
tributions depend on the details of the dynamics, so that the 0.4 0.6 038 1.0
approach to the limit is distinctive. In the following subsec- 50
tions we discuss the particular cases of fully developed chaos '
and intermittency in detail. g 05
52
A. Fully developed chaos cl.:' 0
The case of fully developed chaos in a system such as the o5 [ >
logistic mapping, 0.64 0.67 0.70 0.73
Xn+1= @Xn(1=Xp) (10) A

. _ . . . FIG. 2. (a) Comparison av=4 of the numerical result&oty
at a=4 can be analyzed in detail since the invariant denswoIr the densityP(),14), with the analytic expression, E€L6).

is known exactly. The Lyapunov exponent for this system 'Stsolid line). (b) Numerical resultédots compared with the approxi-
A=In2, and the invariant density, which can be obtained by,,c density, Eq(17) (solid line), for N=100.

solving the appropriate Frobenius-Perron equatioft, 5s16|

applied to obtain invariant densities for other systems(x)

pO)=1/myx(1=x), xe[0,1]. (1) is known, though the form given above, namely, Edf), is
The one-step Lyapunov exponent, not particularly transparent. _
For this mapping, though, based on the analysis for small
N(D)=In|a(1-2x))| (12) N, we conjecture the following asymptotic expression for the
probability density of theN-step exponent,
itself obeys the mapping
Ny(i+1)=In|[exp(2n, (i)} — a?+2a]/2. (13 PN = exf-NA-AD s

. o . . . ™ [1-exp(—2N]\ = ADJ
P(\,1) is merely the invariant density for this mapping, and
by using Eq.(11), one obtains

17

2exgh—1In4)
mJ1—exg2(A—In4)]’

—o<\<In4.

PN, D=

(14

P(N\,N) can be calculated recursively sinkg is known in
terms of\; through Eq{(6). Since\ 4 is known in terms ok;
[Eq. (12)], it is possible to re-express E(®) as

exp(NAy) —G(x)=0, (15
whereG is a polynomial function ok of order 2Y— 1. From
this it directly follows that

p(X)
P(N,N)=Nexp(N\) ,
( N e o)

(16)

the sum being over all real roots(\), of Eq. (15) at given
N e[ —,In4]. Since the polynomialG(x) is of odd order,
there is always one real root. For sufficiently smallall

The main feature to be noted here is that there is a cusp at
A=A, which does not vanish even &—oc although the
range of\ where it is significant decreases sharply with
Outside this range, the function behaves essentially like an
exponential. Equatioril7) thus provides finite-size correc-
tions to the expressions derived earlier by Grassberger, Ba-
dii, and Politi (see Eq. 4.9 in Ref5]).

Both the results, namely, Eq16) or Eq. (17) can be
verified numerically and can be shown to hold to a high level
of accuracy. Shown in Fig.(2) are the(numerica) experi-
mental distributions for the case dfi=14, which very
closely matches both the exa@mplicit) distribution, Eq.
(16), as well as the asymptotic result, E4.7) [Fig. 2(b)].
Evaluation of the former expression requires the determina-
tion of the roots of the corresponding polynomiake use the
Newton-Raphson procedyre&shown in Fig. 3 is the solution
for the case oN=3, when the polynomiaG(x) is of order
7. The divergences in the distributidt(\,3) occur as pairs
of real roots merge. For the specific case of the logistic map-
ping, asN increases the largest number of singularities accu-

roots are real; with increasing they leave the real axis in mulate nearA =In2. The asymptotic form, Eq(17), also
pairs, each such point giving rise to a singularity since thegets progressively more accurate with increasingee Fig.

derivatived G(x)/dx vanishes there.

In principle, Eq.(16) provides an exact solution for the

2(b)].

This form of the density is not restricted to the logistic

invariant density of finite-time Lyapunov exponents for the mapping ate=4, but is also seen in a number of mappings,
logistic mapping. Furthermore, the same technique can behich have fully developed chaos. Even in the logistic map-
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FIG. 3. The real roots¢solid line) and P(\,3) (dash-dotted ling
for the logistic map witha=4. The singularities in the density
occur when a pair of real roots become complek:,3) has been .
rescaled for clarity. _14_0,1 6 011 oiz 0i3 0i4 05

ping, it occurs aall parameter values corresponding to wid-  F|G. 5. Near the intermittent transition dte=1+/(8)
ening crised17], when the attractor is a rescaled image of —107¢], where there are long crossovers, the two components of
the attractor aw=4. the densityP(\,300) (dotted lineg are compared with the total
We have also examined the dependence of the variance dénsity (solid ling). For this statex ,=—0.000 15 and\, =0.03.
the distribution orlN. Typically, o?«1/N” for these distribu-  Note that the amplitudes of the individual densities have been ap-
tions since they narrow with increasiij going, in the limit ~ propriately scaled to depict clearly the manner in which they con-
of N— o2, to aé function. For the case of a Gaussian density,tribute to the total density.
vy=1, while for the exponential density the variance de-
creases more rapidly, ang=2. Our results for the variance For the case of intermittency, the characteristic density of
are shown in Fig 4. the local Lyapunov exponent appears to be a combination of
a normal density and a stretched exponential tail, an example
. of which is shown in Fig. @c). For A<\, , the density is a
B. Intermittency Gaussian, while abovk, , the dependence is
Intermittent dynamics is characterized by a long-range
temporal persistence of correlatiof], evidenced for ex-
ample by the existence of power-law dependence of a num-
ber of quantities on the parameters. The question of the disSince the exponens<1, the exponential tail decays ex-
tribution of the local Lyapunov exponent for intermittent tremely slowly withN. At A=\, , there is a crossover be-
chaos has been explored previously by Besizl.[11], who  tween the Gaussian and the stretched exponential density,
showed that there are significant departures from the Gausgrich results in a completely asymmetric density about the
ian distribution. mean. Similar distributions arise for all intermittent dynami-
cal states, including the case of nonchaotic dynari€s
. . ; One way of understanding the abofghenomenological
expression for the density is to note that in all intermittent
dynamics, the motion switches between two types of states.
- - For each of these different dynamical states, the local
. Lyapunov exponents have a Gaussian distribution centered at
% e different values of\, and with different amplitudes, and the
- . - stretched exponential behavior interpolates between them.
The example for which data is presented here in Fg) 1
and in Fig. 5 is the Type-l intermittency near the tangent
- - bifurcation in the logistic mapping. This dynamics can be
106 , | , | , naturally separated into laminar regiofthat stay close to
100 102 10% 108 the incipient period-3 orbjitand chaotic bursts. Finite-time
N Lyapunov exponents can be separately computed for trajec-
tories that stay entirely in the laminar phase and entirely in
FIG. 4. (a) The variance as a function f for “typical” chaos  the chaotic phase: these give the normal densities shown by
(D), fully developed chaos@), and crisis-induced intermittency the dotted lines in Fig. 5. Trajectory segments that visit both
(V). The exponents characterizing the decay are 1.12,1.95, aridl€ components of the intermittent motion contribute to the
1.51, respectively. For intermittent chatffled circles there is a  Stretched exponential tail; with increasihg the purely cha-
crossover: the exponents in different rangeNajoing from expo- ~ otic component is more difficult to identify, since there are
nential limit 1.85 to the Gaussian limit 1.09 at larye fewer segments that are of duration longer thdnThe

POMN)=~exd —N°(A—N,)], A>\,. (18

100 .
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' ' ' We have mainly focused on the cases of fully developed
chaos, crises, and intermittencies—namely those attractors
for which the density shows a marked departure from the
simple Gaussian form. This is indicative of significant finite-
size corrections to the multifractal formaligd2]. All these
cases show exponential tails albeit for different rea$@6$
For fully developed chaos in the logistic mapping we obtain
the (in principle) exact expression for the probability density
as well as an asymptotic approximate form. These densities
are seen at all parameter values corresponding to interior
crises, and thus are quite common.
A The case of intermittency was analyzed in detail, and the
_ _ density seen there was shown to arise from individual den-
FIG. 6. For the Lorenz equations=a(y—x), y=x(r—z)—y,  sities corresponding to the different components of the mo-
and z=xy—bz, wherea, b, andr are parameters, the density tion (laminar and chaotic, sayvith the stretched exponential
P(\,2048) near the intermittency transitionast10, b=8/3, and  tail corresponding to interpolation between these two.
r=166.880 154 8. Hera is the largest nonzero Lyapunov expo- We have verified the generality of our results for a num-
nent, and the integration step size is 0.02 natural units. ber of other dynamical systems, for example, higher-
dimensional mappings such as thénda system or flows
stretched exponential tail thus decreases with increaing such as the Duffing oscillator, the forced damped pendulum,
and the distribution eventually collapses to a delta functionthe Lorenz equations, etc. These densities are quickly at-
This behavior is generic at all intermittencies. For thetained, and are maintained evenMicreases, and for fairly
mapping high levels of additive nois€24]. This is of particular rel-
evance when analyzing experimental data.
Xni1=Xn+ cxﬁ, (19 The logistic map was used here for illustration since exact
results can be obtained for at least one parameter value, but
which has been extensively studied within the thermody+the probability density for finite-time Lyapunov exponents in
namic formalism in the context of Type-I intermitteni&0], any system can be obtained via E&6) so long as the in-
we observe a similar decomposition of the overall density ofvariant measure is knowi25]. In this regard, it is interesting
LLEs to a superposition of two independent Gaussians witho note that recently, Pingel al.[26] have described a gen-
stretched exponential interpolation between the two. Furthereral inversion technique whereby a class of one-dimensional
more, we have also examined a number of highermaps having a prescribed invariant density can be con-
dimensional maps and flows, and find that at all intermittenstructed.
dynamics, including the cases of forced systems or of non- The characteristic forms for the density that we have de-
chaotic dynamic$19,21], non-Gaussian stretched exponen-scribed are found in a variety of systems, including those
tial tails are seen. An example shown in Fig. 6 is the densitywhere the dynamics is not chaotic. When a system is forced
P(\,2048) for the largest nonzero Lyapunov exponent in thequasiperiodically, chaotic attractors can be transformed to
Lorenz systen(see the figure caption for a definition of the strange nonchaotic attractdr&l]. These attractors are frac-
dynamical systepwith the parameters chosen to correspondtal, but the largest Lyapunov exponent is zero or negative.
to intermittent dynamics. Because of the spatial fractality, though, for short times the
The case of crisis-induced intermitten] (just beyond local Lyapunov exponents can be positive, and the distribu-
widening crises, for instangés similar, with the two inde- tions again fall into the classes that we have seen here for
pendent densities being, respectively, the exponential cusphaotic system§27]. The phenomenon of high-stretch tails
namely, Eq.(17) for the component for the precrisis chaotic also appears to be very general. In recent work Calvo and
attractor, and a Gaussian density, which corresponds to tHeabastie [28] have examined the distribution of local
widened chaotic attractor. The density shown in Figl) for ~ Lyapunov exponents in a conservative system, namely, in a
the period-five widening crisis in the logistic mapping can bel9-particle cluster simulation study. They observe that when
analyzed in a manner very similar to the case illustrated irthe dynamics is intermittenft29], the Lyapunov exponent
Fig. 5. density has a stretched exponential tail.
The variance for these distributions decrease somewhat Local analysis can be more revealing of the nature of the
faster than for the Gaussian, namedf=1/N” with y=26  dynamics than global quantities, and this is an issue when
>1. With increasingN, the exponent however changes, predictability is of concern. For instance, in applications that

In (1,2058)

eventually reaching the Gaussian limjtz=1 (see Fig. 5. aim to predict future behavior based on time-series (fata
example in atmospheric sciences or in econojmiag/pical
IIl. SUMMARY AND DISCUSSION or extreme behavior, which contributes to the stretched tails,

is a serious bottleneck. Since the largest Lyapunov exponent
A major motivation for the present paper has been thecan be extracted from time-series data through standard tech-
realization that local Lyapunov exponent distributions haveniques, examination of the finite-time distributions can give
characteristic forms depending on the nature of the attractorspore insight into the dynamics than the extraction of a single
and that these provide an additional and important dynamicaxponent.
characterization of the chaotic state of a system. We conclude with a few general comments. Except for
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fully developed chaos when the distributions can be derivedtretched-exponential tails in relaxation phenomena is an in-
for all times, the present study does not examine the case &resting open question.

very short times when the distributions are atypical and it is
not clear if they are stationary. The characteristic behavior
becomes apparent for times that are not too short, and per- We would particularly like to thank Antonio Politi for

sists thereafter. Thus, local Lyapunov exponent densitie%umerou?j féijcoussgonz_and advice. \(/jVehaI;lo thglnk I\Iili::ha_el
provide quantitativedistinctions among different chaotic at- ross an tt for discussions, and the Max Planck Insti-

tract £ ial tail h teristic of fully d Itute for the Physics of Complex Systems, Dresden, where
ractors. Exponential tails are charactenstic ot tully devel-ys \work was completed, for hospitality. This research was

analogous distributions that arise in turbulent flo\88] or  Technology, India.
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