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Characteristic distributions of finite-time Lyapunov exponents

Awadhesh Prasad and Ramakrishna Ramaswamy
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India

~Received 8 March 1999!

We study the probability densities of finite-time orlocal Lyapunov exponents in low-dimensional chaotic
systems. While the multifractal formalism describes how these densities behave in the asymptotic or long-time
limit, there are significant finite-size corrections, which are coordinate dependent. Depending on the nature of
the dynamical state, the distribution of local Lyapunov exponents has a characteristic shape. For intermittent
dynamics, and at crises, dynamical correlations lead to distributions with stretched exponential tails, while for
fully developed chaos the probability density has a cusp. Exact results are presented for the logistic map,x
→4x(12x). At intermittency the density is markedly asymmetric, while for ‘‘typical’’ chaos, it is known that
the central limit theorem obtains and a Gaussian density results. Local analysis provides information on the
variation of predictability on dynamical attractors. These densities, which are used to characterize thenonuni-
form spatial organization on chaotic attractors, are robust to noise and can, therefore, be measured from
experimental data.@S1063-651X~99!10208-3#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The statistics of distributions of Lyapunov exponen
~sometimes called stretch exponents! have been studied in
number of physical situations ranging from turbulent flo
@1# to Hamiltonian dynamics~in many-particle systems@2#
and conservative mappings@3#!, and are related to genera
ized dimensions and entropies@4,5#.

Lyapunov exponents provide a quantitative character
tion of dynamics: for a dynamical system inD dimensions,
the D Lyapunov exponents of an orbit measure the rate
which volume elements in the phase space expand or
tract along the orbit, in the different directions. A positiv
Lyapunov exponent~LE! signifies exponential divergence o
trajectories in the given direction, and is associated with c
otic dynamics, while negative LEs are associated with sta
motion, when nearby trajectories converge. Although the
ponents are global or asymptotic quantities, it is often
structive to examine the distribution of values that the
may take locally, namely, over finite-time segments alon
given trajectory@5–7#. If the underlying attractor is nonuni
form, on a chaotic trajectory thelocal LE can be negative
within a finite-time interval. Similarly, on a nonchaotic tra
jectory the local LE can take positive values over finite-tim
intervals @8#. These considerations are of additional r
evance for Lyapunov exponents computed from experim
tal data@9#, since these are, naturally, only finite-time exp
nents.

In this paper, we study the statistics of finite-time or loc
LEs in low-dimensional dissipative dynamical systems. L
cal Lyapunov exponents, which are defined in Eq.~6! below,
depend on initial conditions, unlike the asymptotic or glob
Lyapunov exponent. The distribution of values that the lo
exponents take depends, in a characteristic manner, on
nature of the dynamical state; our present focus is on c
acterizing the different distributions that are obtained for d
ferent dynamical attractors.

We find that the characteristic densities of Lyapunov
ponents fall in distinct classes depending on the nature of
PRE 601063-651X/99/60~3!/2761~6!/$15.00
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attractor. Although the local Lyapunov exponent~LLE! dis-
tributions are stationary, they depend on the time inter
over which the finite-time LE is computed. For very sho
times, the distributions keep changing shape and are diffi
to classify, while in the asymptotic limit, as the time interv
→`, all distributions must eventually collapse to ad func-
tion centered on the global LE. The manner in which th
happens is usually described by the multifractal formali
@5#, but here we address the important corrections to sca
that can be obtained for finite times.

Some aspects of such distributions have been studied
viously. For ‘‘typical’’ chaotic dynamics, when correlation
die out exponentially rapidly, the central-limit theorem hol
for a number of averaged quantities, including loc
Lyapunov exponents@5,7#. Thus, the density is a Gaussia
function, whose width depends on the length of the tim
interval over which the exponents are computed. For in
mittent systems on the other hand, it is well known th
correlations die out very slowly; this can lead to a power-l
scaling for several quantities such as the Lyapunov expon
or the diffusion constant@10#. Benziet al. also studied inter-
mittency in more detail and observed a deviation from
normal distribution in quantities such as the fluctuations
the response function@11#.

We extend the analysis of finite-time Lyapunov expone
to the particular case of fully developed chaos and interm
tency, where dynamical correlations persist over long tim
This leads to significant departures from the simple cen
limit behavior, and the resulting distributions are quite d
tinct from the normal density, typically having exponenti
or stretched exponential tails.

An example, which can be solved exactly, is the co
monly studied logistic map at the Ulam point, namely,x
→4x(12x), for which we obtain an analytic form of the
probability density for all times. The same distribution o
curs for all parameter values where there is a boundary cr
and thus appears to be quite general.

We also treat the case of intermittent dynamics in so
detail. In all instances of intermittency, the dynami
2761 © 1999 The American Physical Society
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2762 PRE 60AWADHESH PRASAD AND RAMAKRISHNA RAMASWAMY
switches between two or more distinct types of behav
The distribution of LLEs that arise in such a situation can
shown to have components arising separately from these
dividual behaviors.

Our main results are presented in Sec. II, where we
cuss the different types of distributions for finite-time LE
Our studies have been mainly on simple dynamical syst
such as the logistic mapping, but the results we obtain ap
to be more generally valid: these distributions can be see
a variety of systems~both mappings and flows!. This is fol-
lowed by a summary and conclusions in Sec. III.

II. CHARACTERISTIC DENSITIES
OF FINITE-TIME EXPONENTS

For generality, consider aD-dimensional discrete nonlin
ear system@12#

Xn115F $a%~Xn!, ~1!

whereXPRD and $a% are a set of parameters. There areD
Lyapunov exponents that are defined by considering a se
orthonormalD-dimensional vectorsêm, m51, . . . ,D, and
examining their evolution under the effect of the tange
mapping, which is determined by the Jacobian ofF, namely,
JF(X). Defining

ej
m5@JF$a%~X j 21!,êj 21

m #, ~2!

the Lyapunov exponents are

Lm5 lim
N→`

1

N (
j 51

N

lniej
mi , m51,2, . . . ,D. ~3!

The vectorsêm are reorthonormalized along the trajector
and the subscriptj here refers to the time. Stretch exponen
are the logarithms of the ratios by which the vectors exp
~or contract! along theD directions,

l1
m~ j !5 lniej

mi , ~4!

and this helps to define themth finite-time Lyapunov expo-
nent in a time interval of lengthN as

lN
m5

1

N (
j 51

N

lniej
mi . ~5!

In the remainder of this paper onlym[1, the largest
Lyapunov exponent, is considered, so the superscript in
will be omitted henceforth in order to simplify notation. Lo
cal Lyapunov exponents are calculated along a trajectory
is divided into segments of lengthN. By lN( i ) is meant the
N-step Lyapunov exponent calculated from thei th segment,
and clearly

lN~k!5
1

N (
j 5N(k21)11

kN

l1~ j !. ~6!
r.
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The asymptotic Lyapunov exponentL[l` does not depend
on initial conditions with probability 1 butlN does. The
probability densityof local Lyapunov exponents, which is
stationary quantity, is defined as

Pa~l,N!dl[Probability that lN

takes a value

betweenl and l1dl. ~7!

If the stretch exponents of a system are considered to
random variables since the dynamics is chaotic, then
finite-time LEs should obey the central-limit theorem, a
the distribution function can be written in the general for
@7#

P~l,N!;
1

@2pNF9#1/2
exp2NF~l!, ~8!

whereF(l) is a convexfunction with minimum atl5L.
ExpandingF to second order gives the Gaussian density

Pa~l,N!;exp2~l2L!2/2s, ~9!

with variances2}1/N. Indeed this argument has been us
very effectively to analyze finite-time LEs on so-calle
‘‘typical’’ chaotic attractors@5,7,10# as shown in Fig. 1~a!,
where the Gaussian nature of the density is evident. H
ever, for other dynamical attractors,P(l,N) can be quite
different, as shown in Figs. 1~b!–1~d!. Indeed, the departure

FIG. 1. Characteristic probability densities that arise in chao
dynamical systems, corresponding to~a! ‘‘typical’’ chaos, ~b! fully
developed chaos,~c! intermittency, and~d! crisis-induced intermit-
tency. Numerical results are forP(l,N) for the logistic map with
~a! a53.7, ~b! a54, ~c! a511A821026, and ~d! a
53.7 447 104. The local Lyapunov exponents are calculated f
N step segments with 106 iterations. Different values ofN are cho-
sen for the three cases, in~a! the Gaussian nature becomes appar
at N around 10 or so, the cusp in~b! is already evident forN around
8 and survives for allN, while the asymmetry in the distribution~c!
and~d! appears to persist for allN. Note that for~d!, N should be a
multiple of the periodicity of the window.
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of F(l) from a polynomial function with quadratic max
mum has been used to characterize the state and stud
persistence of correlations@3,13,14#.

Regardless of the behavior ofP(l,N) for small N, the
local LEs eventually converge to the global expone
limN→`Pa(l,N)→d(L2l). However, for sufficient large
N ~but still far from the limitN→`) the characteristic dis
tributions depend on the details of the dynamics, so that
approach to the limit is distinctive. In the following subse
tions we discuss the particular cases of fully developed ch
and intermittency in detail.

A. Fully developed chaos

The case of fully developed chaos in a system such as
logistic mapping,

xn115axn~12xn! ~10!

at a54 can be analyzed in detail since the invariant den
is known exactly. The Lyapunov exponent for this system
L5 ln 2, and the invariant density, which can be obtained
solving the appropriate Frobenius-Perron equation, is@15,16#

r~x!51/pAx~12x!, xP@0,1#. ~11!

The one-step Lyapunov exponent,

l1~ i ![ lnua~122xi !u ~12!

itself obeys the mapping

l1~ i 11!5 lnu@exp$2l1~ i !%2a212a#/2u. ~13!

P(l,1) is merely the invariant density for this mapping, a
by using Eq.~11!, one obtains

P~l,1!5
2 exp~l2 ln 4!

pA12exp@2~l2 ln 4!#
, 2`<l< ln 4.

~14!

P(l,N) can be calculated recursively sincelN is known in
terms ofl1 through Eq.~6!. Sincel1 is known in terms ofxi
@Eq. ~12!#, it is possible to re-express Eq.~6! as

exp~NlN!2G~x!50, ~15!

whereG is a polynomial function ofx of order 2N21. From
this it directly follows that

P~l,N!5N exp~Nl!(
roots

r~x!

uG8~x!u
, ~16!

the sum being over all real roots,x(l), of Eq. ~15! at given
lP@2`, ln 4#. Since the polynomialG(x) is of odd order,
there is always one real root. For sufficiently smalll all
roots are real; with increasingl they leave the real axis in
pairs, each such point giving rise to a singularity since
derivativedG(x)/dx vanishes there.

In principle, Eq.~16! provides an exact solution for th
invariant density of finite-time Lyapunov exponents for t
logistic mapping. Furthermore, the same technique can
the
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applied to obtain invariant densities for other systems ifr(x)
is known, though the form given above, namely, Eq.~16!, is
not particularly transparent.

For this mapping, though, based on the analysis for sm
N, we conjecture the following asymptotic expression for t
probability density of theN-step exponent,

P~l,N!5
N

p

exp~2Nul2Lu!

@12exp~22Nul2Lu!#1/2
, 2`<l< ln 4.

~17!

The main feature to be noted here is that there is a cus
l5L, which does not vanish even asN→` although the
range ofl where it is significant decreases sharply withN.
Outside this range, the function behaves essentially like
exponential. Equation~17! thus provides finite-size correc
tions to the expressions derived earlier by Grassberger,
dii, and Politi ~see Eq. 4.9 in Ref.@5#!.

Both the results, namely, Eq.~16! or Eq. ~17! can be
verified numerically and can be shown to hold to a high le
of accuracy. Shown in Fig. 2~a! are the~numerical! experi-
mental distributions for the case ofN514, which very
closely matches both the exact~implicit! distribution, Eq.
~16!, as well as the asymptotic result, Eq.~17! @Fig. 2~b!#.
Evaluation of the former expression requires the determ
tion of the roots of the corresponding polynomial~we use the
Newton-Raphson procedure!. Shown in Fig. 3 is the solution
for the case ofN53, when the polynomialG(x) is of order
7. The divergences in the distributionP(l,3) occur as pairs
of real roots merge. For the specific case of the logistic m
ping, asN increases the largest number of singularities ac
mulate nearL5 ln 2. The asymptotic form, Eq.~17!, also
gets progressively more accurate with increasingN @see Fig.
2~b!#.

This form of the density is not restricted to the logist
mapping ata54, but is also seen in a number of mapping
which have fully developed chaos. Even in the logistic ma

FIG. 2. ~a! Comparison ata54 of the numerical results~dots!
for the densityP(l,14), with the analytic expression, Eq.~16!,
~solid line!. ~b! Numerical results~dots! compared with the approxi-
mate density, Eq.~17! ~solid line!, for N5100.



d-
o

e

ity
e

e

g

um
d
nt

us

of
n of
ple

-
-
sity,
the
i-

nt
tes.
cal
d at
e

.

nt
be

jec-
in

n by
oth
the

re

y

y
a

s of
l

ap-
on-

2764 PRE 60AWADHESH PRASAD AND RAMAKRISHNA RAMASWAMY
ping, it occurs atall parameter values corresponding to wi
ening crises@17#, when the attractor is a rescaled image
the attractor ata54.

We have also examined the dependence of the varianc
the distribution onN. Typically, s2}1/Ng for these distribu-
tions since they narrow with increasingN, going, in the limit
of N→`, to ad function. For the case of a Gaussian dens
g51, while for the exponential density the variance d
creases more rapidly, andg52. Our results for the varianc
are shown in Fig 4.

B. Intermittency

Intermittent dynamics is characterized by a long-ran
temporal persistence of correlations@18#, evidenced for ex-
ample by the existence of power-law dependence of a n
ber of quantities on the parameters. The question of the
tribution of the local Lyapunov exponent for intermitte
chaos has been explored previously by Benziet al. @11#, who
showed that there are significant departures from the Ga
ian distribution.

FIG. 3. The real roots~solid line! andP(l,3) ~dash-dotted line!
for the logistic map witha54. The singularities in the densit
occur when a pair of real roots become complex.P(l,3) has been
rescaled for clarity.

FIG. 4. ~a! The variance as a function ofN for ‘‘typical’’ chaos
(h), fully developed chaos (s), and crisis-induced intermittenc
(¹). The exponents characterizing the decay are 1.12, 1.95,
1.51, respectively. For intermittent chaos~filled circles! there is a
crossover: the exponents in different ranges ofN going from expo-
nential limit 1.85 to the Gaussian limit 1.09 at largeN.
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For the case of intermittency, the characteristic density
the local Lyapunov exponent appears to be a combinatio
a normal density and a stretched exponential tail, an exam
of which is shown in Fig. 1~c!. For l<l* , the density is a
Gaussian, while abovel* , the dependence is

P~l,N!'exp@2Nd~l2l* !#, l.l* . ~18!

Since the exponentd,1, the exponential tail decays ex
tremely slowly withN. At l5l* , there is a crossover be
tween the Gaussian and the stretched exponential den
which results in a completely asymmetric density about
mean. Similar distributions arise for all intermittent dynam
cal states, including the case of nonchaotic dynamics@19#.

One way of understanding the above~phenomenological!
expression for the density is to note that in all intermitte
dynamics, the motion switches between two types of sta
For each of these different dynamical states, the lo
Lyapunov exponents have a Gaussian distribution centere
different values ofl, and with different amplitudes, and th
stretched exponential behavior interpolates between them

The example for which data is presented here in Fig. 1~c!
and in Fig. 5 is the Type-I intermittency near the tange
bifurcation in the logistic mapping. This dynamics can
naturally separated into laminar regions~that stay close to
the incipient period-3 orbit! and chaotic bursts. Finite-time
Lyapunov exponents can be separately computed for tra
tories that stay entirely in the laminar phase and entirely
the chaotic phase: these give the normal densities show
the dotted lines in Fig. 5. Trajectory segments that visit b
the components of the intermittent motion contribute to
stretched exponential tail; with increasingN, the purely cha-
otic component is more difficult to identify, since there a
fewer segments that are of duration longer thanN. The

nd

FIG. 5. Near the intermittent transition at@a511A(8)
21026#, where there are long crossovers, the two component
the densityP(l,300) ~dotted lines! are compared with the tota
density ~solid line!. For this state,lp520.000 15 andl* 50.03.
Note that the amplitudes of the individual densities have been
propriately scaled to depict clearly the manner in which they c
tribute to the total density.
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stretched exponential tail thus decreases with increasinN,
and the distribution eventually collapses to a delta functi

This behavior is generic at all intermittencies. For t
mapping

xn115xn1cxn
2 , ~19!

which has been extensively studied within the thermo
namic formalism in the context of Type-I intermittency@20#,
we observe a similar decomposition of the overall density
LLEs to a superposition of two independent Gaussians w
stretched exponential interpolation between the two. Furth
more, we have also examined a number of high
dimensional maps and flows, and find that at all intermitt
dynamics, including the cases of forced systems or of n
chaotic dynamics@19,21#, non-Gaussian stretched expone
tial tails are seen. An example shown in Fig. 6 is the den
P(l,2048) for the largest nonzero Lyapunov exponent in
Lorenz system~see the figure caption for a definition of th
dynamical system! with the parameters chosen to correspo
to intermittent dynamics.

The case of crisis-induced intermittency@7# ~just beyond
widening crises, for instance! is similar, with the two inde-
pendent densities being, respectively, the exponential c
namely, Eq.~17! for the component for the precrisis chaot
attractor, and a Gaussian density, which corresponds to
widened chaotic attractor. The density shown in Fig. 1~d! for
the period-five widening crisis in the logistic mapping can
analyzed in a manner very similar to the case illustrated
Fig. 5.

The variance for these distributions decrease somew
faster than for the Gaussian, namely,s2}1/Ng with g[2d
.1. With increasingN, the exponent however change
eventually reaching the Gaussian limit,g'1 ~see Fig. 5!.

III. SUMMARY AND DISCUSSION

A major motivation for the present paper has been
realization that local Lyapunov exponent distributions ha
characteristic forms depending on the nature of the attrac
and that these provide an additional and important dynam
characterization of the chaotic state of a system.

FIG. 6. For the Lorenz equationsẋ5a(y2x), ẏ5x(r 2z)2y,

and ż5xy2bz, where a, b, and r are parameters, the densi
P(l,2048) near the intermittency transition ata510, b58/3, and
r 5166.880 154 8. Herel is the largest nonzero Lyapunov exp
nent, and the integration step size is 0.02 natural units.
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We have mainly focused on the cases of fully develop
chaos, crises, and intermittencies—namely those attrac
for which the density shows a marked departure from
simple Gaussian form. This is indicative of significant finit
size corrections to the multifractal formalism@22#. All these
cases show exponential tails albeit for different reasons@23#.
For fully developed chaos in the logistic mapping we obta
the ~in principle! exact expression for the probability densi
as well as an asymptotic approximate form. These dens
are seen at all parameter values corresponding to inte
crises, and thus are quite common.

The case of intermittency was analyzed in detail, and
density seen there was shown to arise from individual d
sities corresponding to the different components of the m
tion ~laminar and chaotic, say! with the stretched exponentia
tail corresponding to interpolation between these two.

We have verified the generality of our results for a nu
ber of other dynamical systems, for example, high
dimensional mappings such as the He´non system or flows
such as the Duffing oscillator, the forced damped pendul
the Lorenz equations, etc. These densities are quickly
tained, and are maintained even asN increases, and for fairly
high levels of additive noise@24#. This is of particular rel-
evance when analyzing experimental data.

The logistic map was used here for illustration since ex
results can be obtained for at least one parameter value
the probability density for finite-time Lyapunov exponents
any system can be obtained via Eq.~16! so long as the in-
variant measure is known@25#. In this regard, it is interesting
to note that recently, Pingelet al. @26# have described a gen
eral inversion technique whereby a class of one-dimensio
maps having a prescribed invariant density can be c
structed.

The characteristic forms for the density that we have
scribed are found in a variety of systems, including tho
where the dynamics is not chaotic. When a system is for
quasiperiodically, chaotic attractors can be transformed
strange nonchaotic attractors@21#. These attractors are frac
tal, but the largest Lyapunov exponent is zero or negat
Because of the spatial fractality, though, for short times
local Lyapunov exponents can be positive, and the distri
tions again fall into the classes that we have seen here
chaotic systems@27#. The phenomenon of high-stretch tai
also appears to be very general. In recent work Calvo
Labastie @28# have examined the distribution of loca
Lyapunov exponents in a conservative system, namely,
19-particle cluster simulation study. They observe that wh
the dynamics is intermittent@29#, the Lyapunov exponen
density has a stretched exponential tail.

Local analysis can be more revealing of the nature of
dynamics than global quantities, and this is an issue w
predictability is of concern. For instance, in applications th
aim to predict future behavior based on time-series data~for
example in atmospheric sciences or in economics!, atypical
or extreme behavior, which contributes to the stretched ta
is a serious bottleneck. Since the largest Lyapunov expon
can be extracted from time-series data through standard t
niques, examination of the finite-time distributions can gi
more insight into the dynamics than the extraction of a sin
exponent.

We conclude with a few general comments. Except
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fully developed chaos when the distributions can be deri
for all times, the present study does not examine the cas
very short times when the distributions are atypical and i
not clear if they are stationary. The characteristic behav
becomes apparent for times that are not too short, and
sists thereafter. Thus, local Lyapunov exponent dens
providequantitativedistinctions among different chaotic a
tractors. Exponential tails are characteristic of fully dev
oped chaos and intermittency: whether these are relate
analogous distributions that arise in turbulent flows@30# or
s
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ts
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s
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er-
s
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stretched-exponential tails in relaxation phenomena is an
teresting open question.
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